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Abstract Hydrologists have been waiting for some time to have radar data with a resolution higher than the 
kilometre scale, especially for urban applications. This is now achievable with the help of polarimetric X-
band radars, not only because of their higher frequency, but also because they are much more affordable and 
versatile. X-band radar networks are thus planned around megalopolises. However, to fully take advantage 
of the sophisticated polarimetric “self-calibration” requires further investigations of fundamental questions. 
For instance, ad-hoc homogeneity approximations and/or factorization of the drop distribution have led to 
the common practice to average several scans, and therefore to degrade the measurement resolution in an 
attempt to reduce the coherent backscattering due to heterogeneity of the drop distribution. With the help of 
high-resolution data from an infrared optical spectro-pluviometer, we come back to the question of the 
insights brought by multifractals on the corresponding statistical bias. 
Key words  X-band radar; urban hydrology; drop distribution; multifractals 
 
 
INTRODUCTION  
Weather radars remain the only measuring devices that provide space-time estimates of rainfall. 
However, their classical resolution scale of one kilometre does not meet the relevant scales of 
urban hydrology (e.g. Berne et al., 2004), especially when there are increasing concerns about the 
sustainable development of large cities in the context of climate change. On the one hand, 
urbanisation sprawl induces considerable change in landscape and land-use, and requires more 
detailed observations and integrated predictions of the water balance. On the other hand, IPCC 
foresees an increase of hydrological extremes and heat waves (Solomon et al., 2007). A key driver 
is the extreme variability of the rain field from planetary scales (Lovejoy et al., 2008) to 
centimetre scales (Lilley et al., 2006): the rain-rate, which is the classical precipitation observable, 
is strongly scale dependent. This feature corresponds to the fact that rain accumulation is a 
(mathematical) singular measure (Schertzer et al., 2010). The latter property has many important 
and practical consequences, especially for small-scale observations. These consequences become 
even more important due to the recent breakthrough of dual polarimetry (Testud et al., 2000; Le 
Bouar et al., 2001; Anagnostou et al., 2004; Maki et al., 2005; Matrosov et al., 2005; Berne & 
Uijlenhoet, 2006). Dual polarimetry provides a radar self-calibration with the help of an estimate 
of the drop size distribution (DSD) based on the differential reflectivity varying in response to 
drops flattening with their size. This self-calibration is rather indispensable to removing the rain 
attenuation bias, which increases with the radar frequency and which has been a long lasting 
problem (Hitschfeld & Bordan, 1954). X-band radars became thus able to measure, and not only to 
detect, rainfall. They have several attractive features: reduced transmitted power and antenna size, 
and reduced sensitivity to ground clutter. These features are particularly attractive in rugged 
topography and urban areas. For instance, X-net (Maki et al., 2008)) is a network around Tokyo of 
three polarimetric X-band radars run by INED and 4 X-band radars managed by other institutions. 
Similar networks are to be deployed around 10 other major towns in Japan (Maki et al., 2010) and 
four polarimetric X-band radars of CASA-IP1 are deployed around Oklahoma City (Chandrasekar 
et al., 2007). There are several other projects, including one in the Paris, France, region led by the 
Chair “Hydrology for Resilient Cities” of Ecole des Ponts ParisTech, sponsored by VEOLIA. All 
these projects are focused on getting higher resolution rainfall estimates and call attention on 
needed improvements of the present retrieval schemes of rain-rate from reflectivity and to consider 
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more realistic assumptions than those that are currently used.   

(a)  (b)  

(c) Please supply Fig. 1 (c) again (d)  
 

Fig. 1 (a)–(d): Example of an infrared OSP record: (a) series of the time interval durations between 
drops, (b) corresponding series of the drop diameters, (c) log-log plot of the statistical moments (of 
orders q = 0.5, 1.5, 2.5, 3.5, from bottom to top) of the drop volumes vs. the time resolution λ (= Δt/T, 
Δt being the observation time scale, T the sample length (= 1 day). The latter exhibit two clear scaling 
ranges (power laws, i.e. straight lines): from 1 ms to about 2 s and from 7 min up to 1 day (total sample 
time). Both ranges, separated by a transition plateau, yield the same universal parameter estimates 
(equation (18)). The latter are used to obtain (d) a semi-analytical estimate (equation (16)) of the 
corresponding relative speckle bias sbλ

(q) vs the statistical moment orders q’s. One may note that this 
bias is already of 33% and 60% for q = 1.5, 2, respectively. 

 
 
RADAR REFLECTIVIY AND RAINFALL VARIABILITY  

Developments of polarimetric retrieval schemes have been mostly focused on getting observables 
less dependent on the DSD variability, and are based on the differential reflectivity ZDR or the 
specific differential phase shift KDP in order to get robust correction schemes for the absorption. 
The basic problem of the “speckle” effect or “drop rearrangement” has remained rather untouched. 
This effect results from the ubiquitous hypothesis of a homogeneous distribution of the drops that 
is mathematically convenient to factorize the drop distribution into a Poisson distribution of 
centres and a translation invariant DSD, although it is physically implausible. This hypothesis was 
rather compulsory when the computation means were rather limited and radars were mainly used 
for rain detection (Lawson & Uhlenbeck, 1950), whereas the turbulent wind as well as the 
coalescence processes tend to cluster drops, rather than to homogeneously distribute them in space 
and time. This clustering was empirically checked by (Lovejoy & Schertzer, 1990): the fractal 
distribution of raindrops on horizontal sections exhibits a fractal dimension of order 1.8, instead of 
2 for a homogeneous distribution. This result was disputed by (Gabella et al., 2001; Uijlenhoet et 
al., 2009) and refined by (Desaulnier-Soucy et al., 2001; Lilley et al., 2006) with the help of 3D 
multifractal analyses of rain field volumes of about a cubic metre. The impact of the speckle effect 
was tentatively estimated by (Lovejoy et al., 1996) with the help of a comparison of the effective 
reflectivity field Ze, which is the Fourier transform of the backscatter distribution:  

 
(1) 
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and the traditional radar reflectivity factor Zλ: 

 (2) 

 Both reflectivities are written with an apparent continuous integration and non-dimensional 
variables for convenience:  denotes the non-dimensional radar resolution, i.e. the scale 
ratio of a given outer scale  with respect to the radar pulse length  (  for X-band 
radars) and  is the corresponding radar pulse volume; the resolution  corresponds to 
the inner scale  of the backscatters/rain field variability and the integration is in fact discrete; 

 is the relative volume of the drop volume  centred at the non-
dimensional location ; kr is the non-dimensional radar pulse wave-number (i.e. also 
adimensionalized by ). The classical model corresponds to incoherent small-scale variability 
(homogeneous distribution of backscatters): the backscatter phases in equation (2) are independent 
identically distributed random variables and therefore for a large number of drops, the cross terms 
cancel leading to Ze,λ≈Zλ. The deviation from unity of the ratio of the corresponding statistical 
moment of order  (<.> denotes the ensemble average):  

   (3) 

measures the speckle bias of order q. To take into account the attenuation, one has to distinguish 
the apparent (attenuated) radar reflectivity Za from the equivalent radar reflectivity Ze through:  

 (4) 

where A is the attenuation rate by unit distance. The classical DSD is defined by an exponential 
probability distribution (Marshall & Palmer, 1948):  

 
where N is the concentration by drop size diameter D, N0 is the “intercept parameter”, and Dm is 
the “median volume” diameter. The mathematical convenience of an exponential distribution is 
that its statistical moments of order q are all proportional to the corresponding power of the 
median volume diameter, as for a deterministic distribution: 

. (5) 

This convenient property may easily turn out to be a weak point, because it corresponds to a case 
of weak variability. Nevertheless, its practical success is that it easily yields a Z-R relationship for 
incoherent scattering, because Z corresponds to ( ):  

 (6) 

whereas the rain-rate R corresponds to:  

 (7) 

where the terminal velocity is assumed to be scaling:  

 (8) 
The precise value of the exponent  is a source of uncertainty:  corresponds to the Stokes 
law (in laminar flows), whereas  is commonly used in the high Reynolds number regime 
and according to Atlas & Ulbrich (1977)  is more accurate. This yields two types of Z-R 
relationships:  

 (9) 

 (10) 

should this be equation (5)? 
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that are parameterized by N0 and Dm, respectively. Unfortunately, none of them is able to predict R 
accurately from Z, because both N0 and Dm have large random fluctuations. In contrast, due to the 
relation existing between ZDR and Dm, the above Z-R relation parameterized by Dm (equation (10)) 
can be transformed into a two-parameter estimator R(Z, ZDR), which can be less dependent on the 
DSD variability (Chandrasekar et al., 1990; Gorgucci et al., 1991). As suggested by (Jameson, 
1991) and developed by Gorgucci & Scarchilli (1997) KDP can be used as well. A relatively less 
dependence on the DSD is obtained with the help of slightly more general definitions (Testud et 
al., 2001) of the parameters N0 and Dm (then called “mean volume diameter”):  

 (11) 

that are defined for any DSD. However, they are only two among many possible parameters of a 
probability distribution and whose physical significance largely depends on the type of the actual 
DSD. Furthermore, their relative generality does not preclude any speckle effect. The latter has 
been indirectly estimated by (Le Bouar et al., 2001) for Za in the framework of the ZPHI algorithm 
(Testud et al., 2000) as of the order of ±25% for δA/A and ±20% for δR/R for 10 “independent” 
samples of the same segment. These estimates were used to estimate the standard error of ΦDP, 
which was obtained by averaging over enough adjacent gates (11 in the precise case). This also 
corresponds to the general practice of averaging on a large enough number of samples to smooth 
out the phase dependency of Ze and therefore to become closer to incoherent scattering.  
 
 
SPECKLE AND MULTIFRACTALITY  

Due to the scale dependence of various expressions derived above, the respective importance of 
various terms could be theoretically deduced from their scaling behaviour. This is particularly 
simple for the radar reflectivity Zλ and the rain-rate Rλ because both correspond to an integration 
of a given power of the relative drop volume  or of the corresponding diameter D. There are 
general reasons to believe that both are multifractal as the rain-rate is (Schertzer & Lovejoy, 1987; 
Lovejoy & Schertzer, 1995). This was analysed by Tchiguirinskaia et al. (2003) on a high-
resolution time series of diameters and time intervals obtained by Salles et al. (1998) with the help 
of an infrared optical spectro-pluviometer (OSP), see Fig. 1(a)–(c). In particular, the statistical 
moments exhibit multiscaling/multifractality, i.e. for any (positive) order q:   

 (12) 

where the moment scaling function , with  due to the probability normalisation, is 
convex and nonlinear, except for the exceptional case of mono-/uni-fractality. With the help of the 
technique of “normalized power densities” (Schertzer et al., 1997, 2002; Schertzer & Lovejoy, 
2011) that yields: 

 (13) 

one obtains from equations (2), (6)–(7), (12)–(13):  

. (14) 

On the other hand, due to the fact that the effective reflectivity field Ze (equation (1)) is the energy 
spectrum component for the radar wave number kr and is therefore the Fourier transform of the 
autocorrelation function of the backscatter field , one obtains, still with the help of the 
technique of “normalized power densities”:  

. (15) 

As a consequence, the speckle bias scales like:  



Getting higher resolution rainfall estimates: X-band radar technology and multifractals 
 

5 

. (16) 

 To obtain an estimate of this bias, let us consider that the backscatter field  is a universal 
multifractal field (Schertzer & Lovejoy, 1997) for which:  

 (17) 

where the co-dimension of the mean field  measures the mean intermittency (  
implies that the field is homogeneous) and the multifractality index  measures how the 
intermittency varies with various thresholds or statistical moment order (  corresponds to a 
mono-/uni-fractal, whose intermittency of the extremes and the mean are the same). The following 
estimates (Tchiguirinskaia et al., 2003) obtained for the multifractal distribution of raindrop 
volumes in time:  

 (18) 

yield the speckle bias  displayed in Fig. 1(d), for  by considering the wavelength of 
an X-band radar  and the inter-drop distance . Using the Marshall-Palmer 
relationship (equation (9)), one can crudely estimate similar relative biases for the rain-rate, but for 
respective moment orders , with e.g. . It is worthwhile to note that a more 
detailed analysis is required for moment orders qR’s larger than the critical order qD of the rain-rate 
statistical moment divergence, which is presumably of the order of 3 (Lovejoy & Schertzer, 1995). 
Therefore, more detailed analyses are required to assess the biases of higher order.  
 
 
DISCUSSION AND CONCLUSION 

Higher resolution rainfall data are now available with the help of polarimetric X-band radars. 
However, in spite of the increasing sophistication of the retrieval algorithms, the speckle problem 
remains rather unsolved. Using a multifractal approach, we first obtain a general expression of the 
speckle bias (equation (16)). Using empirical estimates of the multifractal parameters of the drop 
volume distribution obtained by Tchiguirinskaia et al. (2003) on a high-resolution OSP time series 
(Salles et al., 1998), we obtain speckle bias estimates already of 33% and 60% for the statistical 
moments of order ; 2, respectively, contrary to a previous, global estimate of 25% (Le Bouar 
et al., 2001). We also point out similar biases for the rain-rate, as well as the necessity to pursue 
more detailed analyses. Nevertheless, the present results show that there is a necessity to work 
directly on the effective reflectivity rather than on the standard reflectivity.  
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